

MET Performance Studies with Full Simulation

Shuichi Kunori
U. of Maryland
7-June-2000

Issues

MET Resolution

- MET(x,y) = -(Σ Ex(i), Σ Ey(i)) $\sigma(MET) = a/(\Sigma$ Et(i))^{1/2}, (I: readout channel)
- Sensitive to
 - pile-up
 - noise / dead channels
 - threshold in readout
 - LSB (L1: ~1GeV, offline 0.2 GeV) ?
- How to improve?

Trigger

- How low threshold can we go?
 - Limited by resolution for QCD events with zero MET.

MET in tH+

Reconstruction with CMSJET

(R.Kinnunen)

tH+: Selection & Signal

Event selection for tH^+ , $H^+ \rightarrow \tau v$, $\tau \rightarrow h^+ + X$

Events for 105 pb-1

1) τs	election:
	jet, $E_t > 100 \text{ GeV}$, $ \eta < 2.5 \text{ containing}$
	one track with $r = p^h/E^{jet} > 0.8$, $\Delta R(jet,track) < 0.1$

2) $E_t^{miss} > 100 \text{ GeV}$

- 3) W and top mass reconstruction from jets with $E_t > 20 \text{ GeV}$ minimizing $\chi = (m_{ii} - m_W)^2 + (m_{iii} - m_{top})^2$
- 4) W mass cut, $lm_{ii} m_W l < 15 \text{ GeV}$
- 5) top mass cut, $|m_{ijj} m_{top}| < 20 \text{ GeV}$
- 6) Tagging of the jet not assigned to W with $E_t > 30$ GeV, $|\eta| < 2.5$, efficiencies from TDR (2 tracks, $p_t > 1$, GeV, $\sigma^{ip} > 2$): 50% for b-jets, 1.3 % for non-b-jets
- 7) Central jet veto, E_t jet > 40 GeV
- 8) Second top veto, $|m_{\tau v_i}|^* m_{top}| > 130 \text{ GeV}$
- transverse mass reconstruction m_T(τ jet, E_t^{miss})

$m_T(au$ jet, E_t	Signal miss) > 100 GeV	Background tt, Wtb, W+je
$m_A = 400 \text{ GeV}$, $\tan \beta = 30$	68.5	25.6
$m_A = 200 \text{ GeV}$, , $\tan \beta = 20$	41,1	25.6
$m_A = 600 \text{ GeV}$, , $\tan \beta = 40$	33.5	25.6
m _T (τ jet, Ε	E _t miss) > 200 GeV	
$m_A = 400 \text{ GeV}$, , $tan\beta = 30$	61.9	7.8
$m_A = 200 \text{ GeV}$, , $\tan \beta = 20$	12.5	7.8
$m_A = 600 \text{ GeV}$, , $tan\beta = 40$	31.8	7.8

$m_T(\tau \text{ jet, } E_t^{miss}) > 100 \text{ GeV}, \text{ second top and jet veto}$

$m_A = 400 \text{ GeV}$, $\tan \beta = 30$	37.8	4,2
$m_A = 200 \text{ GeV}$, , $\tan \beta = 20$	18.2	4.2
$m_A = 600 \text{ GeV}$, $\tan \beta = 40$	17,9	4,2

Assumed Trigger: 3 jets (Et>20GeV) plus tau-jet (Et>100GeV)

Offline MET Response

Offline MET Resolution

QCD Jets with no neutrino/muon (no pile-up)

$$Ex = \Sigma$$
 (Ex-tower)

Ey =
$$\Sigma$$
 (Ey-tower)

Any way to improve this?

e.g.

Ex'=Ex+
$$\Sigma$$
 (Δ (Ex-jet))

Ey'=Ey+
$$\Sigma$$
 (Δ (Ey-jet))

Does this work?

Minimum Bias Event Overlap (in-time only)

X-sec = 55mb >>> 17.3 min-bias/crossing at 10E34

~17 GeV in unit (eta x phi)!

<Scalar Et> = 1080 GeV

(equiv. cone radius 0.56)

Note: <Scalar Et> = 750 GeV for ttH

MET with Pile-up (eta 5 vs 7)

(CMSJET simulation)

Particle level E_T^{miss} calculation for various η coverage

MET (GeV)
gen. cmsjet
eta res. all(*)
5 15.49 19.36 21.53
7 5.21 12.92 17.80
(all = res. & B-field & vtx smearing)

(S.Abdullin)

~ Equal contribution from eta 5-7, resolution and B-field (15GeV) (12GeV) (9-12GeV)

CMSIM Simulation

HF2:

- Z=1613-1628-1748-1778cm em had tail
- Rin= 2.5cm, Rout=130cm
- Material: Cu(W) + fibers
 - Segmentation eta=0.348, phi=20deg.
 - Size 6.1x7.2cm at eta 5
 - 1.1x0.9cm at eta 7

Rates with Pile-up

(ORCA3)

No pile-up

In-time pile-up

Huge rate below MET < 100 GeV due to min-bias at 10E34.

(P.Hidas)

MET Threshold for 95% efficiency

Different ways to calculate MET

Note: H->tau+tau is relatively low jet multiplicity events.

(P.Hidas)

MET for Signal Events with Pile-up and Tower Threshold

ttH(110) with 17.3 min-bias events

No min-bias

- >> Not much pile-up effect with this resolution!
- >> Resolution gets worse as threshold increase.

MET and LSB

Summary

We just started studies of MET performance at 10E34. We have checked effects due to:

- eta coverage and (in-time) pile-up
- tower Et threshold / LSB
- => Need to check effects due to non-linearity
 - algorithm for MET scale correction

Is there better way to calculate MET than simply using raw readout channels?

 We may need various algorithm depending on final states. --- using Jets, tracks, etc. ???

Suggest us challenging bench mark physics processes for offline and trigger MET!

